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Purpose of review

Although there is an extensive literature on the efficacy of the low carbohydrate diet (LCD) for weight loss
and in the management of type 2 diabetes, concerns have been raised that the LCD may increase
cardiovascular disease (CVD) risk by increasing the level of low-density lipoprotein cholesterol (LDL-C). We
have assessed the value of LDL-C as a CVD risk factor, as well as effects of the LCD on other CVD risk
factors. We have also reviewed findings that provide guidance as to whether statin therapy would be
beneficial for individuals with high LDL-C on an LCD.

Recent findings

Multiple longitudinal trials have demonstrated the safety and effectiveness of the LCD, while also providing
evidence of improvements in the most reliable CVD risk factors. Recent findings have also confirmed how
ineffective LDL-C is in predicting CVD risk.

Summary

Extensive research has demonstrated the efficacy of the LCD to improve the most robust CVD risk factors,
such as hyperglycemia, hypertension, and atherogenic dyslipidemia. Our review of the literature indicates
that statin therapy for both primary and secondary prevention of CVD is not warranted for individuals on
an LCD with elevated LDL-C who have achieved a low triglyceride/HDL ratio.
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’.. there are things we know we know. We also know
there are known unknowns; that is to say, we know
there are some things we do not know.’
Donald Rumsfeld

INTRODUCTION

In 1973, Dr Robert Atkins was called to testify before
the US Senate Select Committee on Nutrition and
Human Needs [1]. The committee was charged with
investigating, amongst others, the eponymously
named high fat ‘Atkins’ diet, which was considered
‘nutritionally unsound and potentially dangerous’.
Nutrition experts called upon were unanimous in
their testimony that this diet was potentially harm-
ful. Dr Fred Stare, for example, Chairman of Har-
vard’s Department of Nutrition stated ‘. . . any diet
which tends to be high in saturated fat and cholesterol
tends to elevate the chance that the individual will get
heart disease.’ (pg 17). This viewpoint on the poten-
tial hazards of the Atkins diet was expressed that
year in an editorial in JAMA which stated, ‘Perhaps
the greatest danger (of the Atkins diet) is related to
uthor(s). Published by Wolters Kluwe
hyperlipidemia, which may be induced by such a regi-
men’ . . . which ‘could be responsible for accelerating
atherosclerosis’ [2]. These concerns with an Atkins,
that is, low carbohydrate diet (LCD) expressed
50years ago have persisted, as evidenced by the
recent proclamation by the National Lipid Associa-
tion Nutrition and Lifestyle Task Force, that long-
r Health, Inc. www.co-endocrinology.com
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KEY POINTS

� Critics of the LCD have focused on its effects on LDL-C,
while largely disregarding the beneficial effects of the
LCD on more robust CVD risk factors.

� There is an extensive literature on measures which are
superior to LDL-C as reliable markers of CVD risk, such
as hypertension, insulin resistance, LDL particle
subtypes, and components of the metabolic syndrome.

� Randomized controlled trial (RCTs) have demonstrated
that individuals with high LDL-C and LCD-like
nonatherogenic lipid markers (low TGs, high HDL-C),
have a low rate of coronary events under nontreatment
conditions. Most notably, subjects with high LDL-C and
nonatherogenic lipid markers derived no benefit from
statin treatment.

� A balanced review of the literature indicates that statin
therapy is not warranted for people on a low-
carbohydrate diet with elevated LDL-C and with a
nonatherogenic lipid profile (low TGs, high HDL-C).

Special commentary
term consumption of the LCD increases the risk of
all-cause and cardiovascular mortality [3].

Concerns with the safety of the LCD are based,
in part, on the diet-heart hypothesis, which postu-
lates that unrestricted consumption of saturated fat
(from animal fat and tropical oils) on an LCD may
raise serum cholesterol levels, thereby increasing
one’s risk of developing cardiovascular disease
(CVD) [4–6]. This hypothesis, however, has failed
to receive empirical support, with decades of schol-
arly critiques of its flaws [7–17,18

&&

,19–21]. We con-
curwithDuBroffanddeLorgeril [7] that thediet-heart
hypothesis survives only because its proponents
‘selectively cite evidence that validates their ownviewpoint
while disregarding evidence to the contrary’.

An extension of the diet-heart hypothesis is the
view that an elevated level of low-density lipoprotein
cholesterol (LDL-C), under any circumstance, ‘is
unequivocally recognized as the principal driving force
in the development of (atherosclerotic cardiovascular dis-
ease)’ [22] and that ‘the key initiating event in athero-
genesis is the retention of low-density lipoprotein (LDL)
cholesterol (LDL-C) . . .within the arterial wall’ [23]. This
perspective on LDL-C as inherently atherogenic has
beenthedrivingforce inrecentconcernsthatanLCD-
induced increase in LDL-C increases one’s risk for
developing CVD [24

&

,25–28,29
&

,30].
Regarding an increase in LDL-C on an LCD in

relation to the risk of a coronary event, we shall
paraphrase the quote from Donald Rumsfeld by
stating there are known knowns and known
unknowns about LCD, LDL-C, and CVD. It is known
that the LCD improves many CVD-relevant
498 www.co-endocrinology.com
biomarkers, but it is not known with certainty if
an increase in LDL-C on an LCD is proatherogenic,
neutral or beneficial. The basis of our lack of knowl-
edge on this issue is the absence of any published
long-term clinical trials which have characterized
hard coronary events, for example, myocardial
infarction, stroke or coronary death, in people
who develop high LDL-C on an LCD. Therefore,
despite the concerns expressed repeatedly over the
past 5 decades, there is no conclusive research to
indicate whether an increase in LDL-C for someone
on an LCD has any effect, beneficial or harmful, on
CVD outcomes.

We have approached the issue of LDL-C con-
cerns on an LCD with the following strategy. First,
we have evaluated the dogmatic view held by var-
ious heart disease organizations that high LDL-C is
inherently atherogenic [22,23,31]. Second, we have
reviewed research onmeasures which are superior to
LDL-C, such as insulin resistance (IR) and LDL par-
ticle subtypes, as markers of CVD risk. Third, we
have reviewed findings that demonstrate the LCD
improves all biomarkers which are strongly associ-
ated with CVD. Lastly, while there is active debate
about the merits of statin therapy in primary pre-
vention of CVD [32–34], statin therapy in secondary
prevention trials and in high risk populations, such
as those with type 2 diabetes, have reported a small
coronary event and mortality absolute risk benefit
[35–37,38

&

]. We have addressed whether this mod-
est benefit of statin treatment can be attributed to
the lowering of LDL-C, per se, or through other
mechanisms. More importantly, we have evaluated
whether the benefit of statin treatment reported in
clinical trials can be extended to people on an LCD
with elevated LDL-C.
ASSESSMENT OF LOW-DENSITY
LIPOPROTEIN CHOLESTEROL AS A
CAUSAL FACTOR IN CARDIOVASCULAR
DISEASE

In 1985, Brown and Goldstein received the Nobel
Prize for their research on LDL-C in people with
familial hypercholesterolemia (FH). They discovered
that thisgeneticcondition involves impairedbinding
of LDL to its membrane receptor, which results in
dramatically elevated serum levels of LDL-C. Because
peoplewithFHexhibitedprematureCVD,Brownand
Goldstein declared therewas a ‘causal relation between
an elevated level of circulating LDL and atherosclerosis’
[39], thereby providing support for the lipid hypoth-
esis, in which LDL-C is described as inherently athe-
rogenic. Since then, this pejorative view of LDL-C as
the ‘bad cholesterol’ has been promoted by high
profile heart disease organizations, such as the
Volume 29 � Number 5 � October 2022
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American Heart Association [40], as well as the Euro-
pean Atherosclerosis Society, which states ‘LDL is
unequivocally recognized as the principal driving force
in the development of ASCVD’ (atherosclerotic cardio-
vascular disease) [22].

Studies on the FH population, however, provide
an extensive literature highlighting inconsistencies
with the lipid hypothesis. For example, if LDL-C is
inherently atherogenic, the burdenof atherosclerosis
should increase with the time of exposure to LDL-C.
That is, cardiovascular mortality would be predicted
to increase with age as a direct consequence of the
time of exposure to LDL-C. To the contrary, CVD
mortality in FH individuals declines with age [41].
Elderly individualswith FHexhibit an equivalent risk
of CVDmortality to those in the non-FH population,
despite a lifetime of exposure to high LDL-C. This
finding directly conflicts with the dual component
hypothesis that LDL-C is inherently atherogenic, and
that CVD risk increases with the duration of LDL-C
exposure [42]. That elderly FH individuals exposed to
decades of high LDL-C demonstrate no increase in
CVDmortality, aswellasno increase inmorbidity, for
example, ischemic stroke [43], compared to the gen-
eral population, undermines the lipid hypothesis,
that is, that high LDL-C is inherently atherogenic.

Further challenging to the lipidhypothesis is that
FH individuals have a lifetime all-causemortality rate
which is equivalent to, or even lower, than that of the
general population [41,44–47]. We submit three
explanations for the longevity of people with FH.
First, the small subset of individuals with FH that
die prematurely of CVD appear to be genetically
susceptible to develop coagulopathy, independent
of their LDL-C levels [48

&

,49–51]. In one example,
Jansen et al., [51] reported thatwhereasLDL-Cdidnot
differ between CVD and non-CVD FH patients, those
with a polymorphism for the prothrombin (coagula-
tion factor II) gene exhibitedover twice the incidence
of CVD than those without the polymorphism. Sec-
ond, LDL-C is an important component of the
immune system [52–54]. Chronically elevated LDL-
C levels may enhance aspects of immune function-
ing, thereby lowering rates of mortality from cancer
and infection [41,46,47]. In related work, elevated
LDL-Cmay protect against bacterial infection, which
can promote the development of atherosclerosis
[53,55–60]. Third, FH individuals, either through
lifestyle choices or favorable genetics, have a rela-
tively low rate of type 2 diabetes [61–65], which itself
is a significant risk factor for CVD. These three obser-
vations help to explain why FH individuals do not
faceanincreasedriskofCVDmortalitywithadvanced
age, as well as the greater longevity of people in the
general population with high LDL-C, compared to
those with low LDL-C [66].
1752-296X Copyright © 2022 The Author(s). Published by Wolters Kluwe
Despite several influential heart disease organ-
izations holding the position that LDL-C is a cause of
CVD, it has long been recognized that LDL-C is a
poor marker of risk for CVD [67–69,70

&&

,71], as well
as cardiovascular and all-cause mortality [66]. For
example, calcification within the coronary arteries,
in contrast to LDL-C, is a reliable measure of CVD
risk. Coronary artery calcium (CAC) scoring has
proven to be the single best predictor of fatal and
nonfatal coronary events [72–75], including CVD
risk in diabetic and nondiabetic patients [76–78], as
well as in young, mid-age and elderly patients [79].
CAC scoring also excels at long-term risk prediction
over periods ofmore than a decade [76,78,80].More-
over, among those with genetically confirmed FH,
approximately half showed no detectable CAC and
had a favorable prognosis, despite significantly ele-
vated LDL-C levels [81].

The superiority of CAC to LDL-C in relation to
plaque development, as well as coronary events, in
high-risk patients was demonstrated recently by
Mortensen et al. [82

&&

]. These investigators identi-
fied CAC levels as being superior to, and independ-
ent of, LDL-C, as a biomarker of coronary event rate.
In related work, Miname et al. [81] reported that
coronary events in statin-treated patients were asso-
ciated with increased CAC scores, and were unre-
lated to on-treatment LDL-C. Moreover, these
investigators found that the ascending gradient of
CAC scores was associated with increases in fasting
glucose and not in on-treatment LDL-C values.

Inonerepresentativeexampleof thevalueofCAC
scoring, Sandesara et al. [83

&&

] reported that over one
third of individuals with very high LDL-C (>190mg/
dl) had a zero CAC score. Hence, the zero CAC score
hadmore predictive utility thanLDL-Cbecause these
individuals had a very low risk for future coronary
events. These findings, as well as related research,
were discussed by Bittencourt et al. [84

&&

], who con-
cluded ‘treatment of individuals with very high LDL-C
(>190mg/dl) irrespectiveof their clinical risk . . .mightnot
be the most prudent approach . . .’. These investigators
further noted that low CAC scores, and therefore the
low CVD risk, in ‘individuals with very high LDL-C
shouldmakeus questionat least part of our understanding
of the atherosclerotic process.’

In addition to CAC scoring, serological markers
have demonstrated clear superiority to LDL-C levels
in assessing CVD risk. For example, Yu et al. [85]
reported that markers of the insulin-resistant phe-
notype, specifically elevated fasting plasma glucose,
hemoglobin A1c and triglycerides (TG), were all
positively correlated with the severity of coronary
stenosis; LDL-C levels, in contrast, showed no cor-
relationwith coronary stenosis. In another example,
FH individuals that carry an A, B or AB blood group
r Health, Inc. www.co-endocrinology.com 499



Special commentary
(which is associated with increased coagulation
[86]), have a twofold increased risk of CVD, com-
pared to those with blood type O [87].

Often overlooked in the discussion about LDL-C
as a cardiovascular risk factor is the heterogeneity of
different LDL particles. That is, the ‘total LDL-C’
reported in a conventional lipid panel represents
the sum of a heterogeneous population of different
low-density lipoprotein particles [71]. One unique
population of LDL particles is known as lipoprotein
(a) (Lp(a)). Lp(a) is a modified LDL particle in which
an apolipoprotein (a) molecule is covalently
attached to the ApoB100 moiety of an LDL particle.
The link of Lp(a) to CVD may be driven by its pro-
inflammatory effects [88]. Lipid peroxidation coloc-
alizes with Lp(a) to contribute to the pathogenesis of
CVD by promoting endothelial dysfunction, lipid
deposition, inflammation, and arterial calcification
[89]. This research has provided strong support for
the view that an elevated plasma concentration of
Lp(a) is an independent risk factor for the develop-
ment of CVD in FH and non-FH individuals [90–94].
It is notable thatWilleit et al. [95

&&

] recently reported
that correcting for the Lp(a) component in the total
LDL-C measure eliminated isolated LDL-C as a CVD
risk factor. This refined assessment of LDL-C, which
takes into account the Lp(a) subfraction, provides a
mechanistic basis for why LDL-C is a poor marker of
CVD risk.

In summary, the pejorative view of LDL-C as the
‘bad cholesterol’, which is inherently atherogenic, is
not supported by a balanced review of the literature.
Numerous investigators who have assessed the clin-
ical literature have concluded that the lipid hypoth-
esis persists today only because of the biases of its
proponents [49,67,68,96,97]. Characteristic of this
sentiment is the opinion that ‘evidence falsifying the
hypothesis that LDL drives atherosclerosis has been
largely ignored’ [98], and the perspective of three
cardiologists that ‘LDL cholesterol risk has been exag-
gerated - Decades of emphasis on the primacy of lowering
plasma cholesterol, as if this was an end in itself, . . . has
been misguided.’ [21]. Finally, the negative impact of
the emphasis on LDL-C reduction in developing
therapeutics has also been recognized, leading
DuBroff [96] to conclude that the ‘LDL-C-centric
approach to cardiovascular disease prevention may have
distracted us from investigating other pathophysiologic
mechanisms and treatments.’
INSULIN RESISTANCE, LIPIDS, AND
CARDIOVASCULAR DISEASE

There is an extensive literature demonstrating that
biomarkers other than LDL-C provide more reliable
assessments of CVD risk. Furthermore, mechanisms
500 www.co-endocrinology.com
have been clearly described for these biomarkers,
affording biological plausibility. Of these other risk
factors, IR, which is related to hyperinsulinemia and
hyperglycemia, is perhaps themost important. Over
3 decades ago, Gerald Reaven summarized the
research on IR by stating that the physiological
‘attempt to compensate for IR sets in motion a series
of events that play an important role in the development
of both hypertension and coronary artery disease’, and
that ‘variations in insulin-stimulated glucose uptake
determine to an enormous degree the likelihood that
an individual will develop premature atherosclerotic
vascular disease’ [99]. Kraft’s [100], conviction that
those with CVD not known to have diabetes were
‘simply undiagnosed’ revealed his insight into the
core mechanisms of CVD. Contemporary research
has confirmed that IR is a strong and independent
predictor of CVD, with compelling evidence that IR
is a major causal influence on the pathophysiology
of CVD [101–105]. This is driven in no small part by
the causal role of IR in the development of type 2
diabetes, itself being the greatest risk for CVD [106].

There are myriad mechanisms whereby IR con-
tributes to the pathogenesis of atherosclerosis. IR-
related measures that are well established independ-
ent risk factors for CVD include hypertension [107],
glycocalyx disruption secondary to hyperglycemia
[108], prothrombosis [109], advanced glycation end
productassociatedendothelialdysfunction [110] and
impairednitricoxidesynthesis [111].TheseIR-related
mechanisms contribute to adverse effects on blood
vessel structure and function [102,103,112].

Through multiple distinct mechanisms, IR is
often the primary driver for hypertension
[113,114], including stimulation of sodium retain-
ing channels within the nephron [115], as well as
activation of the sympathetic nervous system [116–
118]. The chronic hyperinsulinemia that occurs
concurrently in IR promotes chronically elevated
epinephrine, which elicits cardiovascular activa-
tion, including increased cardiac output and sys-
temic vasoconstriction [119,120], as well as an
enhancement of platelet aggregation [121].

IR-associated hyperinsulinemia is also associ-
ated with CVD risk through increased macrophage
lipid accrual in blood vessels. As macrophages
accrue lipids, they become ‘foam cells’. Foam cells
are a staple feature of atherosclerotic plaques, not
only constituting a major portion of the plaque
itself, but also contributing to atherosclerosis by
aggressively secreting pro-inflammatory cytokines
[122]. Park et al. [123] demonstrated that insulin
increasedmacrophage oxidized LDL uptake bymore
than 80% and produced almost three times greater
total lipid uptake into the macrophage in as little as
16h.
Volume 29 � Number 5 � October 2022



FIGURE 1. Data from Austin et al. [148] which illustrate the
association of high triglycerides (TGs) and low HDL with
coronary heart disease (CHDþ). Total cholesterol (TC) and
LDL levels were unrelated to CHD status. � ¼ P<0.05 in
lipid levels between those with (CHDþ) compared to those
without (CHD-) coronary heart disease. HDL, high-density
lipoprotein; LDL, low-density lipoprotein.
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IR, and more specifically, type 2 diabetes and
obesity, are associated with serum lipid components
which are well established risk factors for CVD.
Specifically, LDL-C is contained in heterogeneous
particles which range in size and composition from a
small dense LDL (sdLDL) to a large buoyant LDL
(lbLDL) (which is distinct from the inclusion of Lp
(a) in the total LDL-C measure, as discussed previ-
ously). Circulating sdLDL, unlike lbLDL, readily
undergoes atherogenic modifications in plasma,
including glycation, which is associated with
heightened inflammation, hyperglycemia, and an
increased incidence of CVD in the general popula-
tion [127–130], and in FH individuals [131,132].

The distinction between LDL particle subclasses
based on size and density is also important because
sdLDL is a component of the atherogenic dyslipide-
mia risk triad, composed of elevated levels of TGs
and sdLDL, in concert with low HDL-C [124–126].
High TGs, elevated sdLDL and low HDL-C are each,
individually, strong markers of CVD risk
[71,89,133–142]. Conversely, lbLDL has not been
shown to be a CVD risk factor, as demonstrated in
the Atherosclerosis Risk in Communities Study
[143], the Quebec Cardiovascular Study [144], the
Multiethnic Study of Atherosclerosis [145] and the
Framingham Offspring Study [146]. Ultimately, the
assessment of sdLDL and lbLDL subpopulations
provides a greater prediction of CVD risk than does
LDL-C [142].

The superiority of the atherogenic dyslipidemia
risk triad over total LDL-C as a reliable means of
assessing CVD risk has been known for more than 3
decades [147]. In 1988, Austin et al. [148] reported
that individuals with the atherogenic dyslipidemia
risk triad, referred to as pattern B, exhibited a ‘three-
fold increased risk of myocardial infarction, independent
of age, sex, and relative weight.’. Even then, it was
understood that total cholesterol and LDL-C were of
limited value as markers of CVD risk (Fig. 1). Com-
parable findings were demonstrated in the Framing-
ham Offspring Study [149], in which low HDL-C
levels and elevated TGs were correlated with
reduced lbLDL, increased sdLDL, and an increased
incidence of coronary artery disease. Similarly, Jep-
pesen et al. [150] reported a significantly greater
incidence of ischemic heart disease in men with
the combination of high TGs/low HDL, compared
to men with low TGs/high HDL, independent of
whether the men had low or high LDL-C. Related
work has shown that an elevated TG to HDL-C ratio
is predictive of both a pattern B LDL-C profile,
dominated by sdLDL, and an overall increase in
cardiovascular risk [151]. Similar findings were
reported by Caselli et al. [152], who reported that
high TG and low HDL-C levels were associated with
1752-296X Copyright © 2022 The Author(s). Published by Wolters Kluwe
CVD progression, which was independent of LDL-C
levels and lipid lowering treatments. In summary,
the atherogenic dyslipidemia risk triad is far superior
to total LDL-C as a measure of CVD risk.

In recent years, investigators have focused on
LDL particle number (ApoB), rather than LDL-C, as a
superior measure of CVD risk [69,153,154]. This
measure, however, has significant limitations. First,
it is not limited to the LDL population, with LDL
particles also found on Lp(a), an independent CVD
risk factor, as well as VLDL-C and IDL-C, both of
which are associated with TG, another CVD risk
factor [142,155]. Second, the preferential use of
particle number, rather than LDL-C, does not dis-
tinguish between particle types (sdLDL, lbLDL, Lp
(a)), which have been shown to be differentially
associated with CVD (as described above).

The appearance of a discordance between LDL-C
and total particle number, where the particle count
is higher than expected, has been suggested to serve
as a superior measure of CVD risk than is LDL-C
[69,156]. However, the discordance correlates
closely with measures of IR, for example, metabolic
syndrome and diabetes [156]. In three representa-
tive trials, Otvos et al. [157], Pencina et al. [158] and
Cromwell et al. [69] reported that the discordance
between LDL-C and LDL particle number was supe-
rior to LDL-C, alone, as a CVD risk factor. However,
patients presenting with the ApoB discordance had
higher BMI, fasting glucose, and TGs, an increased
incidence of diabetes and hypertension, as well as
lower HDL-C, than those that were concordant.
Hence, the discordance between particle number
and LDL-C is merely a surrogate marker for
r Health, Inc. www.co-endocrinology.com 501
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atherogenic dyslipidemia (dominance of elevated
TGs, low HDL, and smaller LDL particles) and IR
(see also [159] for related review and discussion).
EFFECTS OF LOW CARBOHYDRATE DIETS
ON CARDIOVASCULAR DISEASE RISK
FACTORS

Atherogenic dyslipidemia is prevalent in individuals
with metabolic syndrome, prediabetes, and type 2
diabetes, which is currently afflicting millions of
people in the US [160]. Chronic exposure to high
levels of glucose and insulin are driving factors in
the development of CVD [161,162]. Modest dietary
changes can be more effective in the treatment of
metabolic syndrome than commonly used antidia-
betic drugs in improving CVD risk [163]. Specifically,
improvement in the cluster of components of meta-
bolic syndrome is intimately connected with carbo-
hydrate restriction in adults [164–167,168

&

,169
&

,
170

&

,171,172
&&

,173–177,178
&&

,179–180,181
&

] and
in adolescents [182]. LCDs have been shown to
improve other CVD risk factors, as well, such as
visceral fat, blood pressure, Lp(a) and inflammation
[183–189]. It is therefore highly relevant that LCDs
havebeen studied innumerousRCTs andcase reports
which show improvement in glucose, lipid and insu-
lin-based CVD risk factors, including an LCD-
mediated reduction in the need for hypoglycemic
medication [178

&&

,190,191
&

,192,193
&

,194
&

,195,196
&

,
197,198

&&

,199
&

].
LCDs are also effective at attenuating the athe-

rogenic dyslipidemia risk triad (reducing TGs,
sdLDL, increasing lbLDL) [159,169

&

,172
&&

,
200

&&

,201]. In a randomized, parallel trial compar-
ing the effects of an LCD to a low-fat diet (LFD) in
obese adults, the LCD resulted in greater weight loss,
increased HDL-C, decreased TGs and C-reactive pro-
tein than the LFD [202]. A meta-analysis concluded
that compared to LFDs, LCDs significantly lowered
predicted risk of atherosclerotic cardiovascular dis-
ease [203], including reductions in plasma TGs and
increased HDL-C [204,205

&&

], which collectively
carry a robust predictive value that dramatically
outperforms LDL-C [206].

While many studies of LCDs have been rela-
tively short-term (<6months), there are longer-
term trials and individual case reports that demon-
strate the effectiveness, and sustainability of these
diets [166,168

&

,169
&

,207–209]. For example, after
1 year, a group of participants with type 2 diabetes
following a ketogenic diet demonstrated robust
improvements in several cardiovascular risk
markers, including decreased TGs, sdLDL particles,
blood pressure, and antihypertensive medications
[210,211]. These findings have been replicated and
502 www.co-endocrinology.com
extended to 2–3 year-long LCD trials, documenting
improvements in numerous CVD risk biomarkers
[212–214], including a 2 year LCD intervention
which demonstrated improvements in LDL particle
size and carotid intima media thickness, a com-
monly used marker of atherosclerosis [200

&&

]. The
longest assessment of LCD effects on record is by
Heussinger et al. [215], who documented the safety
and effectiveness of the ketogenic diet over a 10-year
period in the treatment of patients with epilepsy,
without evidence of an increase in CVD risk bio-
markers.

It is notable that Unwin’s group has incorpo-
rated LCD guidance in their treatment of patients
with type 2 diabetes and prediabetes for over 6 years,
including the de-prescribing of diabetes-related
medications [168

&

,213,216
&

,217
&

]. These clinicians
have reported the safety and efficacy of the LCD,
with statistically significant improvements in their
patients for weight, HbA1c, lipid profiles and
blood pressure.

Although weight loss typically occurs in
response to an LCD, improvements in atherogenic
dyslipidemia are primarily a result of carbohydrate
restriction, rather than weight or fat loss, per se
[172

&&

,199
&

,218,219]. The consistent and often dra-
matic improvement in these biomarkers in response
to LCDs is strong support for the view that carbohy-
drate restriction, independent of weight loss, lowers
CVD risk.

The basis of the diet-heart hypothesis is the great
concern that consumption of food rich in saturated
fat would increase risk for CVD. However, in an RCT
by Volek et al. [189], subjects in the LCD group
exhibited superior improvements in CVD risk fac-
tors than the LFD group, despite the LCD group
having consumed more than three times as much
saturated fat as the LFD group.Moreover, Volek et al.
[204], Dreon et al. [220], Sharman et al. [201], and
Hays et al. [221] all demonstrated that an LCD rich
in saturated fat increased LDL size, leading to a
dominance of lbLDL, thereby lowering CVD risk.
Similar findings were reported by Ebbeling et al.
[222], who found that a high saturated fat, LCD
improved measures of insulin-resistant dyslipide-
mia, without affecting LDL-C, when compared to
lower saturated fat diets.

In related work, Cole et al.[223] studied the
effects of a moderately low carbohydrate (30%),
high fat (55%) diet, supplemented with up to
1800mg/day of cholesterol (from eggs), on serum
lipids in FH subjects. These investigators reported
that consumption of additional fat and cholesterol,
in the context of an LCD, lowered TGs, and raised
HDL, while not affecting LDL-C levels. Comparable
findings were reported in the DIETFITS weight loss
Volume 29 � Number 5 � October 2022
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RCT [224]. These investigators reported that LDL-C
in subjects on an LCD was stable across a broad
range in dietary cholesterol changes from baseline
(>500mg/day) that the participants consumed over
12months.

These studies, as well as those reviewed by
Astrup et al. [18

&&

], reinforce the perspective of the
cardiologist, Bahl [225], that ‘an overreliance in public
health on saturated fat as the main dietary villain for
cardiovascular disease has distracted from the risks
posed by other nutrients, such as carbohydrates.’

In summary, the LCD, independent of the
amount of saturated fat in the diet and weight loss,
leads to significant improvements in the most
robust lipid risk markers for CVD, characterized by
reductions in TGs and sdLDL, with associated
increases in lbLDL and HDL-C. LCDs also reduce
bodyweight, inflammatorymarkers, blood pressure,
and blood glucose, and increase insulin sensitivity.
These findings are summarized in Fig. 2 and in our
recent reviews [48

&

,226
&

].
FIGURE 2. Summary of effects of LCD on CVD risk
biomarkers (from [226&] with permission). CVD,
cardiovascular disease; LCD, low carbohydrate diet.
WOULD LOW-DENSITY LIPOPROTEIN
CHOLESTEROL REDUCTION BENEFIT AN
INDIVIDUAL ON A LOW CARBOHYDRATE
DIET?

Given that elevated LDL-C may occur for individu-
als on an LCD, concerns have been raised that the
diet may therefore increase CVD risk. These con-
cerns have been expressed despite a paucity of evi-
dence that total LDL-C is a reliable CVD risk factor.
In contrast, there is extensive evidence regarding
the efficacy of carbohydrate reduction to improve
the most reliable CVD risk biomarkers, such as
hyperglycemia, IR, inflammation, hypertension,
body weight, and the atherogenic dyslipidemia risk
triad. The LCD is also effective at ameliorating com-
ponents of metabolic syndrome, itself a significant
CVD risk factor. While the improvements in these
biomarkers support the argument in favor of the
CVD benefit of LCDs, it remains that they are sur-
rogate markers only. That is, as surrogate markers
they do not provide conclusive evidence that an
LCD, with an associated increase in LDL-C, will
result in a beneficial effect on hard coronary events,
such myocardial infarction or coronary death.

The relative degree of uncertainty as to the out-
comes of an LCD-induced elevation of LDL-C raises
the question as to whether HMG CoA reductase
inhibitor therapy (statins) is indicated for those
on an LCD. This question takes onmore significance
in the context of increasing popularity of different
LCDs, including assisting in the management of
obesity and diabetes, both representing significant
cardiovascular risk factors themselves. Despite the
1752-296X Copyright © 2022 The Author(s). Published by Wolters Kluwe
popularity of LCDs, we are aware of no published
clinical trials involving subjects with high LDL-C on
an LCD, or of trials on subjects on an LCD with
statin treatment, with an assessment of hard coro-
nary outcomes. Therefore, it cannot be stated with
certainty whether a patient should be concerned
about high LDL-C on an LCD, and whether a patient
with high LDL-C on an LCD would benefit from
statin treatment.

With the caveat of this uncertainty explicitly
stated, findings from two RCTs provide guidance as
to whether people with a typical LCD biomarker
profile (high HDL/low TGs) with high LDL-C, are at
increased risk of experiencing a coronary event, and
whether they may benefit from statin therapy.

The first RCT was based on a reanalysis of the 4S
trial [35],whichwasa secondaryCVDpreventiontrial
in men and women with a history of angina pectoris
or acute myocardial infarction. The reanalysis of the
4S trial assessed hard coronary events in placebo or
statin treated subjects, all ofwhomhad elevatedLDL-
C, with either an atherogenic lipid profile (high TGs/
lowHDL) or a nonatherogenic lipid profile (low TGs/
high HDL) [227]. The first finding of importance is
that within the placebo group, individuals with an
LCD-like (nonatherogenic) lipid profile had a lower
r Health, Inc. www.co-endocrinology.com 503
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incidence of coronary events than placebo-treated
individuals with an atherogenic lipid profile
(Fig. 3). This finding indicates that the presence of
an atherogenic lipid profile, independent of LDL-C,
provided a reliable indication of the risk of coronary
events in untreated individuals.

The second finding of the 4S reanalysis was that
statin treatment produced a significant reduction of
coronary events only in those subjects with the
atherogenic lipid profile. By contrast, statin treat-
ment produced no significant benefit in those sub-
jects with an LCD-like (nonatherogenic) lipid profile
(Fig. 3). That is, despite statin treatment reducing
LDL-C to an equivalent level in those with an athe-
rogenic and nonatherogenic lipid profile, only the
group with a baseline atherogenic profile demon-
strated a treatment-associated reduction in hard
coronary events. This finding supports the view that
individuals on an LCD with high LDL-C and a non-
atherogenic lipid profile (low TGs/high HDL-C)
would not benefit from statin therapy.

A second RCT provides findings complementary
to the 4S posthoc analysis. The prospective study of
Pravastatin in the elderly at risk (PROSPER) study
[228] enrolled elderly men (aged 70–82years) with
preexisting vascular disease or whowere at increased
risk of CVD because they had hypertension,
FIGURE 3. Posthoc analysis of data from the 4S study
[35,227] in which patients were treated with Simvastatin
(open) or placebo (grey). The analysis distinguished patients
with the atherogenic lipid triad (high LDL, high TGs, low
HDL) versus patients with the nonatherogenic lipid triad (high
LDL, low TGs, high HDL). Coronary event rate was higher in
placebo-treated groups with the atherogenic lipid triad
compared to the placebo group with the nonatherogenic
lipid triad. Simvastatin treatment reduced coronary event
rate only in the atherogenic lipid triad. �¼ P<0.05. HDL,
high-density lipoprotein; LDL, low-density lipoprotein, TG,
triglycerides.
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diabetes, and/or were smokers. The men were
administered pravastatin or placebo, and then
assessed for fatal and nonfatal coronary events over
3 years. What is noteworthy is the apparent influ-
ence of HDL-C levels on coronary events in the
placebo and statin-treated groups. Subjects on the
placebo with low HDL-C (<43mg/dl), consistent
with IR, and an atherogenic lipid profile, developed
a significantly greater incidence of coronary events
than placebo subjects with high HDL-C (>53mg/
dl), independent of their LDL-C levels. This first
observation demonstrates that the HDL-C level is
a superior indicator of CVD risk than is LDL-C in
untreated individuals.

The second observation from the PROSPER
study is that benefits of statin treatment occurred
only for those subjects with low HDL, independent
of their LDL-C levels (Fig. 4). As the authors noted
‘Variation in baseline LDL concentrations did not relate
to risk of a coronary event or treatment efficacy. Benefit
was predominantly in the lowest tertile of HDL-choles-
terol . . .’. With low HDL-C being a feature of athero-
genic dyslipidemia, this finding is consistent with
the 4S reanalysis, and provides additional support
for the notion that those with high LDL-C and a
nonatherogenic lipid profile (low TGs/high HDL-C)
are unlikely to benefit from statin therapy.

The absence of a relation between LDL-C and
coronary event reduction with statin treatment sug-
gests that it is their pleiotropic, for example, anti-
inflammatory and anticoagulant, effects [229–238],
rather than LDL-C reduction, per se, that results in a
relatively small reduction in coronary events and
mortality. Therefore, a person on an LCD with a
nonatherogenic lipid profile (low TGs/high HDL-C)
is more likely to experience the adverse effects of
statins [239–252], including an increased risk of
newonset type 2 diabetes [246,253–258], an increase
in fasting blood glucose in patients with andwithout
diabetes [259], mitochondrial dysfunction [260–
262], tendinopathy [263],myopathy [264,265], acute
kidney injury/renal failure [266–268] and cognitive
deficits [247,269–276], than benefits.
SUMMARY AND CONCLUSION

We have addressed concerns regarding high LDL-C
in individuals on an LCD, which began 5 decades
ago and persist to the present day. Our review has
evaluated whether these concerns are justified based
on three levels of analysis. First, critics of the LCD
have focused on how the diet may increase LDL-C.
However, there is a substantial literature demon-
strating that LDL-C is of limited utility as a CVD
risk factor. Second, we reviewed the literature on
LCD improvements in CVD risk factors which are
Volume 29 � Number 5 � October 2022



FIGURE 4. Data from the PROSPER study [228]. Patients
were treated with Pravastatin (open) or placebo (grey). There
was a significant reduction of coronary events only in the
patients with low HDL (<43mg/dl) but not in patients with
high HDL (>53mg/dl). HDL, high-density lipoprotein.
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superior to LDL-C, such as IR, hypertension, hyper-
glycemia, LDL particle subtypes, and metabolic syn-
drome. Third, we summarized RCTs which
demonstrate that individuals with high LDL-C
and an LCD-like lipid profile (low TGs and high
HDL-C), had a low rate of coronary events under
nontreatment conditions and derived no CVD ben-
efit from statin therapy. Therefore, our review of the
literature provides support for the conclusion that
LDL-C reduction with a statin would not provide
any benefit in primary or secondary prevention of
CVD for an individual on an LCD.
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